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ing behavior and habitat requirements of lake t rout , and to improve control and assessment of a

dominant invasive species (sea lamprey), among its other uses.

Cur r ent posit ioning/ t r ack ing m et hods and l im i t at ions. In acoust ic telemetry, a (stat ion-

ary) receiver is typically used to provide the presence-absence informat ion about tagged fish in

the vicinity of the receiver; consequent ly, the fish posit ioning accuracy is defined by the receiver ’s

detect ion range, usually at the order of 200 – 1000 m. Fine-scale fish posit ioning (at the resolut ion

of a few meters to tens of meters) can be achieved with a network of receivers, using t ime-difference-

of-arrival (TDOA) among mult iple receivers that have detected the signal emit ted from the same

tagged fish [16–18]. Within a stat ionary receiver network, observat ions of fish migrat ion pat terns

and spat ial dist ribut ions are limited to areas covered by the network. While this approach to

posit ioning is adequate for some applicat ions involving limited areas (e.g., connect ing channels or

specific reefs) [11], in general, the number of receivers required for monitoring larger ecosystems

quickly becomes prohibit ive in terms of cost and logist ics. Manual searching or t racking with a

receiver mounted on a manned vessel is commonly used to augment data from stat ionary receiver

networks; however, this approach is labor-intensive and cost ly.

Recent ly, underwater gliders [19] and propelled autonomous underwater vehicles (AUVs) [9,20–

23] have been exploited to detect and track fish in several studies. For example, Clark et al. have

demonst rated the use of two AUVs to collaborat ively t rack an acoust ic-tagged shark [22]. However,

the high cost of gliders and AUVs – typically exceeding $150,000 per vehicle – presents a significant

barrier to wide adopt ion of this technology. The large sizes (meters long) of these vehicles also

make it challenging not to affect natural behavior of fish [9]. Propeller-driven AUVs have a typical

operat ional t ime of less than 10 hours and thus cannot t rack fish cont inuously for days to gather

longer-term movement data. While gliders can operate without interrupt ion for months or longer,

their low speed, poor maneuverability, and inability to operate in shallow water (< 5 m) dictate

a passive detect ion mode, and proact ive t racking of a detected fish is difficult . Another piece of

relevant work involves the use of small robot ic boats for the detect ion of RF-tagged carps in inland

lakes [7]. However, the use of such autonomous surface vehicles in acoust ic telemetry is faced with

several challenges, including poor acoust ic detect ion performance at water surface, suscept ibility to

damage/ loss due to boat t raffic and theft , and being limited to periods without ice cover.

GPS

Wireless comm. 
antenna

Crude oil sensor

Temperature
sensor

90 cm

(a) (b) (c)

F igur e 2: Gliding robot ic fish prot otype developed by PI Tan’s group: (a) Dimensions; (b) the robot gliding in a

pool; (c) t he robot swimming in the K alamazoo River and sampling crude oil concent rat ions. V ideos of pool-test ing

and field-t est ing of t he gliding robot ic fish, including demonst rat ions of swimming, gliding, and spiraling mot ions, can

be found in Youtube [24].

G liding r obot ic fi sh as an ener gy-efficient and cost -effect ive al t er nat ive. PI Tan’s lab

has recent ly developed a new underwater robot , called gliding robotic fish, that represents a hybrid

of underwater glider and robot ic fish (Fig. 2) [25–27]. I t achieves locomot ion primarily through

buoyancy-driven gliding or spiraling, and uses an act ive tail for maneuvering and assist ive loco-

mot ion. Consequent ly, it possess unique advantages of both underwater gliders (energy-efficiency)

and robot ic fish (high maneuverability), and hence holds great promise in long-durat ion monitoring

of real-world water environments, including advancing the state of the art in acoust ic telemetry.

The robot has been field-tested in the Kalamazoo River, Michigan, to sample the concentrat ions
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Semi-Distributed Multi-objective Planning on Networks
Minimum Travel Time Index with Distance Index < 6
Minimum Travel Time Index with Distance Index < 4
Minimum Travel Time Index with Distance Index < 2

Travel Index Time = Current Travel time / Ideal Travel time  Distance Index = Distance / Min Distance 

Minimize distance and travel time:

Cloud

Vehicle to Infrastructure
(V2I) Communication

Vehicle to Vehicle (V2V)
Communication

Related work:

S. Bopardikar, B. Englot and A. Speranzon, “Multi-Objective Path Planning in

GPS Denied Environments under Localization Constraints”, ACC 2014

S. Bopardikar, B. Englot and A. Speranzon, “Robust Belief Roadmap: Planning 

Under Uncertain And Intermittent Sensing”, ICRA 2014
Challenges:

• Continuous re‐planning as traffic changes
• Intermittent communication  V2V and V2I
• Large‐Scale (Semi) Distributed Planning
• Hierarchical Multi‐scale Planning

Shorted path

This slides contains no technical data subject to the ITAR or the EAR
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4. Randomized Framework for Scalable Analytics

P1

P2

Saturday, July 22, 17

Randomized Framework for Scalable Analytics

Randomized Algorithms to explore accuracy–scalability tradeoffs
1 Sampling-based methods for min-max problems / games

2 Projection-based (matrix factorization) methods for analytics

Analytic guarantees on accuracy and computational complexity

Results hold with very high probability (also a design parameter)

Funding: ARO MURI (UC Santa Barbara post-doc), UTRC Innovation Pipeline 2015,

ONR 2016 – 2019 (PI: Shaunak D. Bopardikar)
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Randomized algorithms to explore accuracy–scalability tradeoffs
1 Sampling-based methods for robust design and games
2 Projection-based methods for scalable inference

Analytic guarantees on accuracy and computational complexity

Results hold with high probability (design parameter)

Funding: ARO MURI (UC Santa Barbara post-doc), UTRC Innovation pipeline,

Office of Naval Research 2016 – 2019 (PI: Shaunak D. Bopardikar)
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Shanelle N. Foster, Ph.D.
Assistant Professor
Department of Electrical and Computer Engineering
Research Interests: Electrical Machine and Drive Design 
Optimization; 3D Printed Electric Motors; Failure Diagnosis, 
Prognosis and Mitigation Strategies

Fault Diagnosis Algorithms

3D Printing of Magnetic 

Cores for Electrical Motors Motor Design Optimization

Traction Motor for 

Zero-emission Locomotive



Tongtong Li, Ph.D.
Professor
Department of Electrical and Computer 
Engineering
Research Interests: 5G-6G Wireless 
Communications and Networking; Wireless 
Security; Connected and Autonomous Vehicles; 
Driver Wellness Evaluation



Daniel Morris, Ph.D.

Associate Professor

Department of Electrical and Computer Engineering

Research Interests: 3D Sensing, Sensor Fusion,
Object Detection and Tracking

Lidar-camera depth completion
Lidar-camera fusion for 

accurate object detection

Accurate lidar-based 3D 

shape 3D estimation

Global track association for

vehicle tracking

Radar-camera fusion



Conformal Lightweight Vehicular Antennas

Cellular and C-V2X

Side view 

mirror

Additively Manufactured RF hardware for automotive radars 
& wireless communication systems (e.g. C-V2X and 5G) 

John Papapolymerou, Ph.D.

MSU Foundation Professor and Department Chair

Department of Electrical and Computer Engineering

Research Interests: RF/Microwave & mm-wave circuits 
and systems; Antennas; Radars and wireless sensors; 
Additive manufacturing for RF components & systems



Hayder Radha

MSU Foundation Professor

Department of Electrical & Computer Engineering

Research Interests: Autonomous and Connected Vehicles; Multi-modal 
Sensor Fusion; Deep Learning Architectures & Algorithms for Autonomous 
Systems; Multi-object Tracking; Statistical Signal Processing

State-of-the-art object detection under foggy conditions MSU-CANVAS object detection under foggy conditions

None of these objects are detected

Partial vehicle detected

All objects in scene are detected

Full vehicle detected

MSU-CANVAS
multi-object tracking

Noisy & cluttered detections

Miss detection by SOTA 
3D lidar based detector

False
positive

No false
positive

Occluded vehicle detected by
MSU-CANVAS multi-modal sensor fusion



Gliding Robotic Fish

Xiaobo Tan, Ph.D., Fellow of IEEE, ASME

MSU Foundation Professor & Richard M. Hong Endowed Chair

Department of Electrical and Computer Engineering

Research Interests: Control of Autonomous Systems, 
Underwater Robots, Soft Robots, Sensors and Actuators, 
Mobile Sensing

Autonomous Surface Vehicle Soft and Rigid Snake Robots Soft Sensors and Actuators
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Annick Anctil, Ph.D. 

Assistant Professor
Department of Civil and Environmental Engineering

Research Interests: Life-cycle assessment, 
Remanufacturing 2nd life battery from EV; Renewable 
energy system design; Interactive decision tool

Interactive decision tool for battery storage, 
solar and EV charging 

Cost and carbon footprint of second-life battery in 
residential and utility-level applications

Economic & environmental feasibility of 2nd

life batteries for EV fast-charging



Experimental Traffic 
Control Devices

Monitoring Vehicle Speed Profiles

Using Technology to Manage     
Driver Behavior

Timothy J. Gates, Ph.D., P.E.

Associate Professor

Department of Civil and Environmental Engineering

Research Interests: Traffic Control Devices; Motorist 
Behavior; Road Safety; Statistical Methods; Traffic 
Operations; Peds/Bicyclists; Transportation Economics



Mehrnaz Ghamami, Ph.D.

Assistant Professor

Department of Civil and Environmental Engineering

Research Interests: Sustainable Transportation, Transit 
Operations, and Intelligent Transportation Systems (ITS)

Storage and Solar to Support 

EV’s DC Fast Charging

Candidate location

Selected location

EV Charger Placement-

Urban trips in Michigan

Electric Buses-

Transportation-Based Community 

Micro-grid Anchored at Worcester, MAEV Charger Placement-

Intercity trips in Michigan



Peter T. Savolainen, Ph.D., P.E.

MSU Foundation Professor

Department of Civil and Environmental Engineering

Research Interests: Transportation Safety; Statistical and 
Econometric Methods; Traffic Operations; Connected and 
Autonomous Vehicles

Naturalistic Driving

 

 

Speed Limit Policies

Shoulder Use as a 
Temporary Lane

CV Data as Leading 
Predictors of Crashes



Large-scale simulation of CAVs

Smart Campus Design (Electric 
Autonomous Shuttles)

Collision Avoidance and 
Mitigation Systems (Winter 
Maintenance Operations)

Green Transportation Modes for Freight Delivery

Ali Zockaie, Ph.D.

Assistant Professor

Department of Civil and Environmental Engineering

Transportation Network Modeling; Mathematical Optimization; 
Sustainability; Connected and Autonomous Vehicles



Zhaojian Li, Ph.D.

Assistant Professor

Department of Mechanical Engineering

Research Interests: Connected and Autonomous Vehicles,

Robotics, Control Theory, Vehicle Dynamics and Control

Online system identification and 
predictive control of nonlinear systems

Privacy-preserved collaborative road 
information crowdsourcing

Robotic fruit harvesting



Tamara Reid Bush, Ph.D.

Associate Professor, Faculty Excellence Advocate

Mechanical Engineering Department

Research Interests: Seating Mechanics, Injury, Design for 
Disability and Micro-mobility

E-scooter Injury 
Mechanics

Human/ Vehicle 
Interactions

Designing to support persons 
with disabilities

NSF Disability and 
Rehabilitation 

Engineering Program



Eva Kassens-Noor, Ph.D.
Associate Professor, School of Planning, Design, and Construction & 
Global Urban Studies Program
Adjunct Department of Geography, Environment and Spatial Sciences

Adjunct Department of Civil and Environmental Engineering

Research & Teaching Interests: Transportation, Artificial Intelligence such 
as AVs & domotics; Extreme Events such as Olympic Games and 
Pandemics; Learning



Zeenat Kotval-K, Ph.D., AICP

Assistant Professor

School of Planning, Design & Construction

Research Interests: Travel Behavior, Health, Aging 
Population, & Food Systems

Access to Food & Public 
Transit in Grand Rapids, MI

Poverty, Race, and Healthcare Attainment in 
Lansing and Ann Arbor



T. Teresa Qu, Ph.D., P.E.

Associate Professor

School of Planning, Design, and Construction

Research Interests: Active Transportation; Accessible 
Transportation; Autonomous Vehicles for People with Disabilities

Autonomous Vehicles for 
People with Disabilities

Micro-mobility
Best Practices in 
Walking/Biking

Context Sensitive 
Solutions/Design

Source: DAVID PAUL MORRIS / BLOOMBERG / GETTY



Elizabeth Mack, Ph.D.

Associate Professor and Associate Chair

Department of Geography, Environment, and Spatial Sciences

Research Interests: Access and use of emerging technologies 
including autonomous vehicles and broadband enabled internet 
technologies
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The world is focused now on a public health crisis and the economic disruption caused by

the appropriate policy response. The current environment is likely to have long-run

structural e! ects on society. However, well before the pandemic crisis a transportation

revolution already was on the horizon, a change that might be accelerated by the current

economic disruption.

General Motors (GM) chief executive o! icer Mary Barra has committed GM to a vision of

‘zero crashes, zero emissions, and zero congestion’ through a transportation revolution of

electric, autonomous vehicles. The other traditional automobile firms, newer electric-

vehicle firms such as Tesla, autonomous vehicle firms such as Waymo (Google), and firms

developing autonomous freight trucks all are involved in building toward this revolution.

Several consistent perceptions or predictions are emerging about how transportation may

evolve in a very recent and still somewhat sparse literature. Most suggest that there will be

fewer registered vehicles overall, including a decrease in the number of vehicles owned by

households. Rather, most autonomous vehicles will be operated in fleets, either owned by

private firms or government. An increase in vehicle miles travelled (VMT) is forecast, as

both fleet and household autonomous vehicles are used more continuously than current

vehicles. Finally, the expectation is that fleet autonomous vehicles will predominately

operate with electric or hybrid motors.

These developing changes in transportation have substantial fiscal implications especially

for state and local governments – a! ecting both revenues and expenditures. In the United

States at least, these important fiscal implications for subnational governments have not

received as much attention as the technological issues concerning the development of

autonomous vehicles and the limitations of public acceptance.

Three papers addressing the fiscal implicationsThree papers addressing the fiscal implications

A recent Forum in the National Tax Journal provided an introduction to research that is

just beginning to address these fiscal issues. Bill Fox examines revenue e! ects for state

governments, Ben Clark considers the potential for solid waste collection, and I examine

the broad implications for subnational government expenditures.

Examples of key findings show the substantial importance of these fiscal issues. For

instance, Fox reports simulations for six states that estimate that revenue reductions for

di! erent scenarios of autonomous vehicle expansion. The results are reductions of

between 2 and 9 per cent of total revenues and 60 per cent or more of transportation

revenues once autonomous vehicles are fully adopted. My work suggests that among US

local governments, county governments may be those most exposed, as about 60 per cent

of county budgets have the potential to be a! ected as autonomous vehicles and ride-

sharing fleets expand. These potential e! ects span the common county public service

areas of highways, police protection and corrections, the judicial system, health and

hospitals, and public welfare, among others.

Governments should plan in advanceGovernments should plan in advance

Perhaps even more important than the estimates of future e! ects are suggestions for what

governments should be doing now. Advance planning on the part of national

governments, as well as states and localities, clearly seems warranted. Fox argues that

states have an opportunity now to reform their tax structures, perhaps to include levying a

sales tax or value added tax on mobility, instituting a tax based on vehicle miles, and

structuring congestion charges. Regarding expenditures, governments might be cautious

about acquiring new parking and transit facilities, (services for which there may be

substantial change sooner than the useful life or financing term) and plan construction

work to create flexible road infrastructure that can be adapted easily. Clark argues that

autonomous vehicle technology o! ers the opportunity for substantial e! iciency gains in

public service delivery with planning and new equipment.

In terms of planning for this future, Australia seems ahead of the United States (at least

from afar). The Transport and Infrastructure Council under the Council of Australian

Governments is overseeing collaborative planning involving the national, state, territory,

and local governments. In contrast, less than half of major cities in the United States are

preparing for autonomous vehicles in their long-range transportation planning (and even

fewer small cities). State governments are adopting regulations regarding autonomous

vehicles, but the coverage and breadth varies substantially. Intergovernmental

coordination largely is lacking.

One hopes the work reported in the National Tax Journal’s Forum will not only stimulate

additional policy research, but also encourage the necessary additional coordinated

planning by government. As I noted in my paper, ‘Although vehicles may become self-

driving, public policy surely will not.’

 

Further readingFurther reading

Clark, Benjamin Y. (2020), The Impacts of Autonomous Vehicles on Local Government

Budgeting and Finance: Case of Solid Waste Collection , National Tax Journal, 73:1, pp.

259-282.

Fisher, Ronald C. (2020), Governmental Expenditure Implications of Autonomous Vehicles,

National Tax Journal, 73:1, pp. 235-258.

Fox, William F. Fox (2020), The Influence of Autonomous Vehicles on State Tax Revenues ,

National Tax Journal, 73:1, pp. 199-234.
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• Pioneering Work Developing Model Regulations and Regulations for 
Deployment of Highly Automated vehicles

• Groundbreaking “Automated Vehicles and the Law” Course Bringing 
Together Multi-Disciplinary Experts in Law, Government, Engineering

• 2018 and 2019 World Congress on Legal Issues of ADAS and AV Chaired 
by MSU Law Professor (Also Keynote Presentations)

Nicholas Wittner, J.D.

Professor in Residence

College of Law

Research Interests: Automated Vehicles and the 
Law
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Nick Little, Director Railway Education
Center for Railway Research & Education
The Eli Broad College of Business
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Efficiency & Effectiveness



Research Experiences for Undergraduates (REU) Site: Sociomobility 
This annual program involves multidisciplinary projects that focus on sociomobility -- research at 
the intersection of engineering and the social sciences. These projects will:

(1) examine social, political, legal, and economic concerns that may affect the widespread 
adoption of AVs; 

(2) assess issues related to social equity and the accessibility of AVs to groups with limited 
mobility alternatives, including adolescent, elderly, low-income, and disabled individuals; and

(3) study the implications of AVs on public health, urban planning, workforce development, and 
the environment.


